# Indonesian Combinatorial Society (InaCombS)

Learned Society in Bandung, Indonesia

Mathematics Departement, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, Jawa Barat 16424, Indonesia

# Indonesian Combinatorial Society (InaCombS)

Indonesian Combinatorial Society (InaCombS) was established on 6 May 2006 to facilitate, encourage, foster and cherish combinatorics development in Indonesia and improve the application of combinatorics to other disciplines.

InaCombS is a professional organization that is scientific, non-profit and independent. The organization is a forum for combinatorists and other enthusiasts who want to develop combinatorics in Indonesia. InaCombS is headquartered in Bandung, West Java.

Fields of study: Mathematics & Statistics

41–60 of 114 results.

• Anie Lusiani • Edy Tri Baskoro • Suhadi Wido Saputro
• 2017
Let $K_{l\times t}$ be a complete, balanced, multipartite graph consisting of $l$ partite sets and $t$ vertices in each partite set. For given two graphs $G_1$ and $G_2$, and integer $j\geq 2$, the si...
• 2017
Let $G = (V,E)$ be a simple connected graph. Theeccentric-distance sum of $G$ is defined as$\xi^{ds}(G) =\ds\sum_{\{u,v\}\subseteq V(G)} [e(u)+e(v)] d(u,v)$, where $e(u)$ %\dsis the eccentricity of th...
• K. Pravas • A. Vijayakumar
• 2017
The Gallai and the anti-Gallai graphs of a graph $G$ are complementary pairs of spanning subgraphs of the line graph of $G$. In this paper we find some structural relations between these graph classes...
• Anak Agung Gede Ngurah • Rinovia Simanjuntak
• 2017
A graph G of order p and size q is called super edge-magic if there exists a bijective function f from V(G) U E(G) to {1, 2, 3, ..., p+q} such that f(x) + f(xy) + f(y) is a constant for every edge $xy... • Bryan Freyberg • Melissa Keranen • 2017 The following generalization of distance magic graphs was introduced in . A directed Z_n-distance magic labeling of an oriented graph$\overrightarrow{G}=(V,A)$of order n is a bijection$\overrigh...
• Richard M. Low • W. H. Chan
• 2016
The combinatorial game of Nim can be played on graphs. Over the years, various Nim-like games on graphs have been proposed and studied by N.J. Calkin et al., L.A. Erickson and M. Fukuyama. In this pap...
• R. Rajarajachozhan • R. Sampathkumar
• 2016
A twin edge $k\!$-coloring of a graph $G$ is a proper edge $k$-coloring of $G$ with the elements of $\mathbb{Z}_k$ so that the induced vertex $k$-coloring, in which the color of a vertex $v$ in $G$ is...
• Ebrahim Vatandoost • Fatemeh Ramezani
• 2016
Let $R$ be a commutative ring (with 1) and let $Z(R)$ be its set of zero-divisors. The zero-divisor graph $\Gamma(R)$ has vertex set $Z^*(R)=Z(R) \setminus \lbrace0 \rbrace$ and for distinct $x,y \in ... • Bart Demoen • Phuong-Lan Nguyen • 2016 A graph edge is$d$-coloring redundant if the removal of the edge doesnot change the set of$d$-colorings of the graph. Graphs that are toosparse or too dense do not have coloring redundant edges. Tig... • Linda Eroh • Henry Escuadro • Ralucca Gera • Samuel Prahlow • Karl Schmitt • 2016 Due to the increasing discovery and implementation of networks within all disciplines of life, the study of subgraph connectivity has become increasingly important. Motivated by the idea of community ... • M. H. Akhbari • Nader Jafari Rad • 2016 A set$D$of vertices in a graph$G=(V,E)$is a total dominatingset if every vertex of$G$is adjacent to some vertex in$D$. Atotal dominating set$D$of$G$is said to be weak if everyvertex$v\in V...
• Shariefuddin Pirzada • Hilal A. Ganie • Merajuddin Siddique
• 2016
For a graph $G$ with vertex set $V(G)=\{v_1, v_2, \dots, v_n\}$, let $S$ be the covering set of $G$ having the maximum degree over all the minimum covering sets of $G$. Let $N_S[v]=\{u\in S : uv \in E... • J. Vernold Vivin • K. Kaliraj • 2016 The notion of equitable colorability was introduced by Meyer in$1973$\cite{meyer}. In this paper we obtain interesting results regarding the equitable chromatic number$\chi_{=}$for the corona grap... • Charles Delorme • 2016 We revisit Hoffman relation involving chromatic number$\chi$and eigenvalues. We construct some graphs and weighted graphs such that the largest and smallest eigenvalues$\lambda$dan$\mu$satisfy$...
• N. S. A. Karim • Roslan Hasni • Gee-Choon Lau
• 2016
For a graph $G$, let $P(G,\lambda)$ denote the chromatic polynomial of $G$. Two graphs $G$ and $H$ are chromatically equivalent if they share the same chromatic polynomial. A graph $G$ is chromaticall...
• Salman Fawzi Ghazal
• 2016
Let $D$ be a digraph without digons. Seymour's second neighborhood conjecture states that $D$ has a vertex $v$ such that $d^+(v) \leq d^{++}(v)$. Under some conditions, we prove this conjecture for di...
• David J. Aldous
• 2016
Modeling a road network as a planar graph seems very natural. However, in studying continuum limits of such networks it is useful to take {\em routes} rather than {\em edges} as primitives. This artic...
• Christian Barrientos • Sarah M. Minion
• 2016
In this paper we study a technique to transform $\alpha$-labeled trees into $\rho$-labeled forests. We use this result to prove that the complete graph $K_{2n+1}$ can be decomposed into these types...
• Ismail Sahul Hamid • S. Balamurugan • A. Navaneethakrishnan
• 2016
A set $S$ of vertices of a graph $G$ such that $\left\langle S\right\rangle$ has an isolated vertex is called an \emph{isolate set} of $G$. The minimum and maximum cardinality of a maximal isolate set...
• Chula Janak Jayawardene • Edy Tri Baskoro • Lilanthi Samarasekara • Syafrizal Sy
• 2016
For simple graphs $G_1$ and $G_2$, the size Ramsey multipartite number $m_j(G_1, G_2)$ is defined as the smallest natural number $s$ such that any arbitrary two coloring of the graph $K_{j \times s}$ ...
per page