Implicit Social Trust Dan Support Vector Regression Untuk Sistem Rekomendasi Berita

Melita Widya Ningrum • Wijanarto Wijanarto
Journal article Cogito Smart Journal • 2017

Unduh teks lengkap
(Bahasa Indonesia, 11 pages)

Abstrak

Situs berita merupakan salah satu situs yang sering diakses masyarakat karena kemampuannya dalam menyajikan informasi terkini dari berbagai topik seperti olahraga, bisnis, politik, teknologi, kesehatan dan hiburan. Masyarakat dapat mencari dan melihat berita yang sedang populer dari seluruh dunia. Di sisi lain, melimpahnya artikel berita yang tersedia dapat menyulitkan pengguna dalam menemukan artikel berita yang sesuai dengan ketertarikannya. Pemilihan artikel berita yang ditampilkan ke halaman utama pengguna menjadi penting karena dapat meningkatkan minat pengguna untuk membaca artikel berita dari situs tersebut. Selain itu, pemilihan artikel berita yang sesuai dapat meminimalisir terjadinya banjir informasi yang tidak relevan. Dalam pemilihan artikel berita dibutuhkan sistem rekomendasi yang memiliki pengetahuan mengenai ketertarikan atau relevansi pengguna akan topik berita tertentu. Pada penelitian ini, peneliti membuat sistem rekomendasi artikel berita pada New York Times berbasis implicit social trust. Social trust dihasilkan dari interaksi antara pengguna dengan teman-temannya dan bobot kepercayaan teman pengguna pada media sosial Twitter. Data yang diambil merupakan data pengguna Twitter, teman dan jumlah interaksi antar pengguna berupa retweet. Sistem ini memanfaatkan algoritma Support Vector Regression untuk memberikan estimasi penilaian pengguna terhadap suatu topik tertentu. Hasil pengolahan data dengan Support Vector Regression menunjukkan tingkat akurasi dengan MAPE sebesar 0,8243075902233644%.

Metrik

  • 184 kali dilihat
  • 40 kali diunduh

Jurnal

Cogito Smart Journal

CogITo Smart Journal adalah jurnal ilmiah di bidang Ilmu Komputer yang diterbitkan oleh Fakultas ... tampilkan semua