Metrik

  • visibility 78 kali dilihat
  • get_app 33 downloads
description Journal article public Journal of Intelligent Systems

Penerapan Bootstrapping untuk Ketidakseimbangan Kelas dan Weighted Information Gain untuk Feature Selection pada Algoritma Support Vector Machine untuk Prediksi Loyalitas Pelanggan

Abdul Razak Naufal, Romi Satria Wahono, Abdul Syukur
Diterbitkan 2015

Abstrak

Prediksi loyalitas pelanggan merupakan sebuah strategi bisnis yang penting bagi industri telekomunikasi modern untuk memenangkan persaingan global, karena untuk mendapatkan pelanggan baru biayanya lebih mahal lima sampai enam kali lipat daripada mempertahankan pelanggan yang sudah ada. Klasifikasi loyalitas pelanggan bertujuan untuk mengidentifikasi pelanggan yang cenderung beralih ke Perusahaan kompetitor yang sering disebut customer churn. Algoritma Support Vector Machine (SVM) adalah algoritma klasifikasi yang juga berfungsi untuk memprediksi loyalitas pelanggan. Penerapan algoritma SVM dalam memprediksi loyalitas pelanggan mempunyai kelemahan yang mempengaruhi keakuratan dalam memprediksi loyalitas pelanggan yaitu sulitnya pemilihan fungsi kernel dan penentuan nilai parameternya. Dataset yang besar pada umumnya mengandung ketidakseimbangan kelas (class imbalance), yaitu adanya perbedaan yang signifikan antar jumlah kelas, yang mana kelas negatif lebih besar daripada kelas positif. Dalam penelitian ini diusulkan metode resampling bootstrapping untuk mengatasi ketidakseimbangan kelas. Selain itu dataset juga mengandung fitur yang tidak relevan sehingga dalam pemilihan fitur dalam penelitian ini digunakan metode dua fitur seleksi yaitu Forward Selection (FS) dan Weighted Information Gain (WIG). FS berfungsi untuk menghilangkan fitur yang paling tidak relevan serta membutuhkan waktu komputasi yang relatif pendek dibandingkan dengan backward elimination dan stepwise selection. WIG digunakan untuk memberi nilai bobot pada setiap atribut, karena WIG lebih cocok digunakan dalam memilih fitur terbaik daripada Principal Component Analysis (PCA) yang biasa digunakan untuk mereduksi data yang berdimensi tinggi. Tujuan pembobotan ini untuk merangking atribut yang memenuhi kriteria (threshold) yang ditentukan dipertahankan untuk digunakan oleh algoritma SVM. Sedangkan untuk pemilihan parameter algoritma SVM dengan menggunakan metode grid search. Metode grid search dapat mencari nilai parameter terbaik dengan memberi range nilai parameter. Grid search juga sangat handal jika diaplikasikan pada dataset yang mempunyai atribut sedikit daripada menggunakan random search. Hasil eksperimen dari beberapa kombinasi parameter dapat disimpulkan bahwa prediksi loyalitas pelanggan dengan menggunakan sampel bootstrapping, FS-WIG serta grid search lebih akurat dibanding dengan metode individual SVM.

Full text

 

Metrik

  • visibility 78 kali dilihat
  • get_app 33 downloads