Journal article // EECCIS






Implementasi Kombinasi Feature Extraction Untuk Content Based Image Retrieval
2014
Fredy Windana, Moechammad Sarosa, Purnomo Budi Santoso

Metrik

  • Eye Icon 140 kali dilihat
  • Download Icon 351 kali diunduh
Metrics Icon 140 kali dilihat  //  351 kali diunduh
Abstrak

In this research, the CBIR method used several combination of feature extraction methods, such as a combination between LCH (HSV) and DC Coefficient, a combination between 2 nd Order Statistic GLCM Sub Block and DC Coefficient, and a combination between LCH (HSV), 2 nd Order Statistic GLCM Sub Block and DC Coefficient. Sample image experiment test was used from CorelDB dataset. The result from the research showed performance component value of Non Interpolating Average Precision method performed by the combination of LCH (HSV) and DC Coefficient performance rate was about 23%. While the variance of the combination of 2 nd order statistic GLCM sub block and coefficient DC and the combination of LCH (HSV), 2 nd order statistic GLCM sub block and coefficient DC showed performance rate was about 12%.Keywords – CBIR, LCH, GLCM, DC Coefficient

Teks lengkap
Show more arrow
 
Lainnya dari jurnal ini
Optimasi Training Neural Network Menggunakan Hybrid Adaptive Mutation PSO-BP
Perbandingan Desain Dan Analisis IC Standard Dan Datasheet TTL AOI Dual 2-Wide 2-Input
🧐  Jelajahi semua dari jurnal ini

Metrik

  • Eye Icon 140 kali dilihat
  • Download Icon 351 kali diunduh
Metrics Icon 140 kali dilihat  //  351 kali diunduh