Resampling Logistic Regression Untuk Penanganan Ketidakseimbangan Class Pada Prediksi Cacat Software

Harsih Rianto • Romi Satria Wahono

Unduh teks lengkap
(Bahasa Indonesia, 8 pages)

Abstrak

Software yang berkualitas tinggi adalah software yang dapat membantu proses bisnis Perusahaan dengan efektif, efesien dan tidak ditemukan cacat selama proses pengujian, pemeriksaan, dan implementasi. Perbaikan software setelah pengirimana dan implementasi, membutuhkan biaya jauh lebih mahal dari pada saat pengembangan. Biaya yang dibutuhkan untuk pengujian software menghabisakan lebih dari 50% dari biaya pengembangan. Dibutuhkan model pengujian cacat software untuk mengurangi biaya yang dikeluarkan. Saat ini belum ada model prediksi cacat software yang berlaku umum pada saat digunakan digunakan. Model Logistic Regression merupakan model paling efektif dan efesien dalam prediksi cacat software. Kelemahan dari Logistic Regression adalah rentan terhadap underfitting pada dataset yang kelasnya tidak seimbang, sehingga akan menghasilkan akurasi yang rendah. Dataset NASA MDP adalah dataset umum yang digunakan dalam prediksi cacat software. Salah satu karakter dari dataset prediksi cacat software, termasuk didalamnya dataset NASA MDP adalah memiliki ketidakseimbangan pada kelas. Untuk menangani masalah ketidakseimbangan kelas pada dataset cacat software pada penelitian ini diusulkan metode resampling. Eksperimen dilakukan untuk membandingkan hasil kinerja Logistic Regression sebelum dan setelah diterapkan metode resampling. Demikian juga dilakukan eksperimen untuk membandingkan metode yang diusulkan hasil pengklasifikasi lain seperti Naïve Bayes, Linear Descriminant Analysis, C4.5, Random Forest, Neural Network, k-Nearest Network. Hasil eksperimen menunjukkan bahwa tingkat akurasi Logistic Regression dengan resampling lebih tinggi dibandingkan dengan metode Logistric Regression yang tidak menggunakan resampling, demikian juga bila dibandingkan dengan pengkalisifkasi yang lain. Dari hasil eksperimen di atas dapat disimpulkan bahwa metode resampling terbukti efektif dalam menyelesaikan ketidakseimbangan kelas pada prediksi cacat software dengan algoritma Logistic Regression.

Metrik

  • 400 kali dilihat
  • 342 kali diunduh

Jurnal

IlmuKomputer.com Journal of Software Engineering

Journal of Software Engineering adalah jurnal ilmiah berkala yang memuat hasil penelitian pada bi... tampilkan semua