# Indonesian Combinatorial Society (InaCombS)

Learned Society in Bandung, Indonesia

Mathematics Departement, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, Jawa Barat 16424, Indonesia

# Indonesian Combinatorial Society (InaCombS)

Indonesian Combinatorial Society (InaCombS) was established on 6 May 2006 to facilitate, encourage, foster and cherish combinatorics development in Indonesia and improve the application of combinatorics to other disciplines.

InaCombS is a professional organization that is scientific, non-profit and independent. The organization is a forum for combinatorists and other enthusiasts who want to develop combinatorics in Indonesia. InaCombS is headquartered in Bandung, West Java.

Fields of study: Mathematics & Statistics

1–20 of 114 results.

• Suresh Elumalai • Toufik Mansour • Mohammad Ali Rostami
• 2018
The hyper-Zagreb index of a simple connected graph G is defined by ${\chi ^2}(G) = \sum_{uv \in E(G)} {{{\left( {d(u) + d(v)} \right)}^2}}$. In this paper, we establish, analyze and compare some new u...
Let $0<n\in\mathbb{Z}$. In the unit distance graph of $\mathbb{Z}^n\subset\mathbb{R}^n$, a perfect dominating set is understood as having induced components not necessarily trivial. A modification ...
Given a group G, the intersection power graph of G, denoted by $\mathcal{G}_I(G)$, is the graph with vertex set G and two distinct vertices x and y are adjacent in $\mathcal{G}_I(G)$ if there exists ...
Let G be a simple graph of order n. The domination polynomial of G is the polynomial $D(G, x)=\sum_{i=\gamma(G)}^{n} d(G,i) x^{i}$, where d(G,i) is the number of dominating sets of G of size i and $\g... • Eunice Mphako-Banda • Julian A. Allagan • 2018 We give some reduction formulas for computing the Tutte polynomial of any graph with parallel classes. Several examples are given to illustrate our results. • Ramin Nasiri • Hamid Reza Ellahi • Gholam Hossein Fath-Tabar • Ahmad Gholami • 2018 The signless Laplacian Estrada index of a graph$G$is defined as$SLEE(G)=\sum^{n}_{i=1}e^{q_i}$where$q_1, q_2, \ldots, q_n$are the eigenvalues of the signless Laplacian matrix of G. Following th... • B. Sooryanarayana • Suma A. S. • 2018 Let G=(V,E) be a simple connected graph. A subset S of V is called a neighbourhood set of G if$G=\bigcup_{s\in S}<N[s]>$, where N[v] denotes the closed neighbourhood of the vertex v in G. Furth... • Marvin Minei • Howard Skogman • 2018 We give a new construction of Ramanujan graphs using a generalized type of covering graph called a weighted covering graph. For a given prime p the basic construction produces bipartite Ramanujan grap... • Ali Ahmad • Ashok Gupta • Rinovia Simanjuntak • 2018 In computer science, graphs are used in variety of applications directly or indirectly. Especially quantitative labeled graphs have played a vital role in computational linguistics, decision making so... • Nobuaki Obata • Alfi Y. Zakiyyah • 2018 A connected graph is said to be of QE class if it admits a quadratic embedding in a Hilbert space, or equivalently, if the distance matrix is conditionally negative definite. Several criteria for a g... • Ali Sadeghieh • Nima Ghanbari • Saeid Alikhani • 2018 Let G be a finite connected graph of order n. The Gutman index Gut(G) of G is defined as$\sum_{\{x,y\}\subseteq V(G)}deg(x)deg(y)d(x, y)$, where deg(x) is the degree of vertex x in G and d(x, y) is t... • Martin Baca • Andrea Semanicova-Fenovcikova • S. Slamin • Kiki A. Sugeng • 2018 For a simple graph G, a vertex labeling f:V(G)\to {1, 2, ..., k} is called a k-labeling. The weight of a vertex v, denoted by$wt_f(v)$is the sum of all vertex labels of vertices in the closed neigh... • HÃ¥kan Lennerstad • Mattias Eriksson • 2018 In this paper we consider node labelings c of an undirected connected graph G=(V,E) with labels {1,2,... ,|V|}, which induce a list distance c(u,v)=|c(v)-c(u)| besides the usual graph distance d(u,v).... • Uma Tul Samee • Shariefuddin Pirzada • 2018 A$k$-partite$r$-digraph(multipartite multidigraph) (or briefly MMD)($k\geq 3$,$r\geq 1$) is the result of assigning a direction to each edge of a$k$-partite multigraph that is without loops and co... • Phan-Thuan Do • Ngoc-Khang Le • Van-Thieu Vu • 2017 Trapezoid graphs are intersection graphs of trapezoids between two horizontal lines. Many NP-hard problems can be solved in polynomial time if they are restricted on trapezoid graphs. A matching in a ... • Omid Khormali • 2017 For any$k \in \mathbb{N}$, the$k-$distance graph$D^{k}G$has the same vertex set of$G$, and two vertices of$D^{k}G$are adjacent if they are exactly distance$k$apart in the original graph$G$. ... • Denny Riama Silaban • Edy Tri Baskoro • Saladin Uttunggadewa • 2017 Let$G$and$H$be simple graphs. The Ramsey number for a pair of graph$G$and$H$is the smallest number$r$such that any red-blue coloring of edges of$K_r$contains a red subgraph$G$or a blue s... • S. M. Hosseini Moghaddam • D. A. Mojdeh • Babak Samadi • Lutz Volkmann • 2017 In this paper, we study the signed 2-independence number in graphs and give new sharp upper and lower bounds on the signed 2-independence number of a graph by a simple uniform approach. In this way, w... • Seyed Morteza Mirafzal • Ali Zafari • 2017 Let$\Gamma=Cay(\mathbb{Z}_n, S_k)$be the Cayley graph on the cyclic additive group$\mathbb{Z}_n(n\geq 4),$where$S_1=\{1, n-1\}$, \dots ,$S_k=S_ {k-1}\cup\{k, n-k\}\$ are the inverse-closed s...