Recently Published
Most Viewed
Profil Vitamin, Kalsium, Asam Amino Dan Asam Lemak Tepung Jewawut (Setaria Italica L.) Fermentasi Image
Journal article

Profil Vitamin, Kalsium, Asam Amino Dan Asam Lemak Tepung Jewawut (Setaria Italica L.) Fermentasi

Foxtail millet (Setaria italica L.) is tropical cereal grains of Poaceae. Foxtail millet starch content is quite high, so it has the potential to be used as food raw material; This study has been conducted by making foxtail millet flour fermented with starter bacteria of cellulolytic and amylolytic Bacillus amyloliquifaciens B7 and lactic acid bacteria of Lactobacillus plantarum SU-LS537 which can degrade phytic acid. Parameters measured in the fermentation of foxtail millet was amount of vitamin E, B6 and B12, calcium, essential and non essential amino acids, essential and non essential fatty acids. Fermented foxtail millet decreased vitamin content. A ten fold increase content of calcium concentrations, essential amino acids (histidine, threonine, valine, methionine, isoleucine, leucine, phenylalanine, lysis), non-essential amino acids (aspartic acid, glutamic acid, serine, glycine, arginine, alanine, proline, tyrosine, and cysteine), the fatty acid (lauric , palmitic) and decrease of fatty acid stearic (non essential fatty acids). Bacillus amyloliquifaciens B7 fermentation increased oleic acid but it decreased linoleic acid while Lactobacillus plantarum SU-LS537 fermentation increased linoleic acid, but it decreased oleic acid.
Perkembangan Teknologi Dan Tantangan Dalam Riset Bioetanol Di Indonesia Image
Journal article

Perkembangan Teknologi Dan Tantangan Dalam Riset Bioetanol Di Indonesia

Bioetanol merupakan andalan untuk mengurangi penggunaan BBM non diesel untuk transportasi. Penelitian untuk mencari bahan baku dan proses yang ekonomis serta ramah lingkungan menjadi kegiatan riset di berbagai Negara, terutama sejak terjadinya krisis BBM akibat peningkatan konsumsi BBM diseluruh dunia diawal tahun 1970an.Berdasarkan bahan baku yang dipakai, bioetanol dikelompokkan menjadi bioetanol generasi pertama yang dibuat dari gula, atau pati, dan generasi kedua adalah yang dibuat dari lignoselulosa, disebut sebagai Etanol Selulosa. Generasi ketiga dibuat dari alga disebut sebagai Etanol Alga, dan generasi keempat dibuat dari bahan hasil modifikasi genetika atau bahan lainnya, disebut sebagai Advanced Bioethanol dalam kelompok Advanced Biofuels.Indonesia, sebagai Negara beriklim tropis, memiliki berbagai tanaman penghasil pati, lignoselulosa, alga dan berbagai limbah organik untuk pembuatan bioetanol.Industri bioetanol di Indonesia masih memanfaatkan komoditi pangan seperti ubi kayu dan molase tebu sebagai bahan baku, sedangkan lembaga litbang dan perguruan tinggi sudah melakukan penelitian membuat bioetanol generasi kedua maupun ketiga. Pemerintah Indonesia berupaya untuk meningkatkan penggunaan bioetanol sebagai campuran bahan bakar kendaraan non diesel sampai mencapai 15 % etanol dalam campuran (E-15) pada tahun 2025. Dibanyak Negara, pemanfaatan etanol untuk bahan bakar kendaraan sudah bervariasi dari campuran E-10 sampai dengan E-85.Tinjauan ini mengungkap perkembangan teknologi pada setiap generasi, dan mengindikasikan tantangan yang dihadapi lembaga litbang di dalam negeri dalam mengembangkan teknologi pembuatan bioetanol dari biomasa lokal. Area penelitian yang prospektif dalam bidang ini juga dikemukakan.Kata Kunci : bioetanol, molase tebu, generasi, perkembangan teknologi, tantangan riset.  Bioethanol is a potential energy source to reduce gasoline utilization for transportation. Research activities to find out raw material and environmentally and economically process have been conducted in many countries especially after the oil crisis in early 1970s. Based on raw material processed, bioethanol is grouped into first, second, third and fourth generations. The first generation is derived from sugar or starch, the second generation is derived from lignocellulosic biomass, called as cellulosic ethanol. The third generation is produced from algae, called as Ethanol Algae, while the fourth generation is grouped as advanced biofuels.Indonesia, as a tropical country, posseses various kind of starchy plant, lignocellulosic materials, various species of algae, and organic wastes for ethanol production. Local bioethanol industries utilize food materials such as cassava and sugarcane molasse as feedstock, while universities and R&D institutions have conducted researches to produce the second or the third generations bioethanol. The government of Indonesia has planned to increase utilization of bioethanol in bioethanol-gasoline mixture for transportation up to 15 % (E-15) by 2025. In many countries, utilization of bioethanol for transportation vary in a range from E10 to E 85.This review shows technology development at each generations, and indicates challenges for local R&D institutions in order to develop technology for bioethanol production utilizing local biomass. Prospectives research areas in the field are also highlighted.
Suggested For You
Variasi Genetik Lactobacillus Fermentum Beijerink Asal Sayur Asin Berdasarkan Analisis Rflp 16s\u002D23s Rdna Isr, Rapd\u002Dpcr Dan Eric\u002Dpcr [Genetic Variation of Lactobacillus Fermentum Beijerink Origin Sayur Asin Based on Rflp 16s\u002D23s Rdna Isr, Rapd\u002Dpcr and Eric\u002Dpcr Analysis] Image
Journal article

Variasi Genetik Lactobacillus Fermentum Beijerink Asal Sayur Asin Berdasarkan Analisis Rflp 16s-23s Rdna Isr, Rapd-pcr Dan Eric-pcr [Genetic Variation of Lactobacillus Fermentum Beijerink Origin Sayur Asin Based on Rflp 16s-23s Rdna Isr, Rapd-pcr and Eric-pcr Analysis]

Molecular analysis of Lactobacillus fermentum isolates is essential to understand their genetic variation in relations to their roles in sayur asin fermentation process. Combination of three molecular techniques which is restriction fragment length polymorphism (RFLP) of 16S23S rDNA intergenic spacer region (ISR), random amplified polymorphic DNA (RAPD-PCR) and an enterobacterial repetitive intergenic consensus (ERIC-PCR) analysis were performed to discriminate 19 representative isolates of L. fermentum isolated from sayur asin. The result showed that L. fermentum strain D11 is distantly related to other isolates based on RFLP using HhaI restriction enzyme and RAPDPCR analyses. In addition, both of RAPD-PCR and ERIC-PCR successfully determined the genetic variation among L. fermentum strains by exhibiting distinct 4-8 bands (800-2080 bp) and 4-10 bands (280-3050 bp), respectively. A dendogram generated from UPGMA cluster analysis of both RAPD-PCR and ERIC-PCR data showed two distinct genotypic groups exist among L. fermentum isolated from sayur asin in Indonesia.
Siklus Hidup Jamur Konsumsi Lokal Kulat Kritip (Schizophyllum Commune) Pada Daerah Bergambut Dan Daerah Bertanah Mineral Serta Potensi Nutrisinya Image
Journal article

Siklus Hidup Jamur Konsumsi Lokal Kulat Kritip (Schizophyllum Commune) Pada Daerah Bergambut Dan Daerah Bertanah Mineral Serta Potensi Nutrisinya

Pertumbuhan Optimal Bakteri Laut Pseudomonas Aeruginosa LBF\u002D1\u002D0132 Dalam Senyawa Piren Image
Journal article

Pertumbuhan Optimal Bakteri Laut Pseudomonas Aeruginosa LBF-1-0132 Dalam Senyawa Piren

Siklus Hidup Jamur Konsumsi Lokal Kulat Kritip (Schizophyllum Commune) Pada Daerah Bergambut Dan Daerah Bertanah Mineral Serta Potensi Nutrisinya Image
Siklus Hidup Jamur Konsumsi Lokal Kulat Kritip (Schizophyllum Commune) Pada Daerah Bergambut Dan Daerah Bertanah Mineral Serta Potensi Nutrisinya Image
Journal article

Siklus Hidup Jamur Konsumsi Lokal Kulat Kritip (Schizophyllum Commune) Pada Daerah Bergambut Dan Daerah Bertanah Mineral Serta Potensi Nutrisinya

Pertumbuhan Optimal Bakteri Laut Pseudomonas Aeruginosa LBF\u002D1\u002D0132 Dalam Senyawa Piren Image
Pertumbuhan Optimal Bakteri Laut Pseudomonas Aeruginosa LBF\u002D1\u002D0132 Dalam Senyawa Piren Image
Journal article

Pertumbuhan Optimal Bakteri Laut Pseudomonas Aeruginosa LBF-1-0132 Dalam Senyawa Piren

Read more articles