Recently Published
Journal article

Journal article

Journal article

Journal article

Journal article

Journal article

Journal article

Journal article

Journal article

Most Viewed
Journal article

## The Eccentric-distance Sum of Some Graphs

Let $G = (V,E)$ be a simple connected graph. Theeccentric-distance sum of $G$ is defined as$\xi^{ds}(G) =\ds\sum_{\{u,v\}\subseteq V(G)} [e(u)+e(v)] d(u,v)$, where $e(u)$ %\dsis the eccentricity of the vertex $u$ in $G$ and $d(u,v)$ is thedistance between $u$ and $v$. In this paper, we establish formulaeto calculate the eccentric-distance sum for some graphs, namelywheel, star, broom, lollipop, double star, friendship, multi-stargraph and the join of $P_{n-2}$ and $P_2$.
Journal article

## Inverse Graphs Associated with Finite Groups

Let $(\Gamma,*)$ be a finite group and $S$ a possibly empty subset of $\Gamma$ containing its non-self-invertible elements. In this paper, we introduce the inverse graph associated with $\Gamma$ whose set of vertices coincides with $\Gamma$ such that two distinct vertices $u$ and $v$ are adjacent if and only if either $u * v\in S$ or $v * u\in S$. We then investigate its algebraic and combinatorial structures.
Journal article

Journal article

Journal article

Journal article

Journal article

Journal article

Journal article

Journal article

Journal article

Journal article

Journal article

Journal article

## On H-irregularity Strengths of G-amalgamation of Graphs

Suggested For You
Journal article

## On Some Covering Graphs of a Graph

For a graph $G$ with vertex set $V(G)=\{v_1, v_2, \dots, v_n\}$, let $S$ be the covering set of $G$ having the maximum degree over all the minimum covering sets of $G$. Let $N_S[v]=\{u\in S : uv \in E(G) \}\cup \{v\}$ be the closed neighbourhood of the vertex $v$ with respect to $S.$ We define a square matrix $A_S(G)= (a_{ij}),$ by $a_{ij}=1,$ if $\left |N_S[v_i]\cap N_S[v_j] \right| \geq 1, i\neq j$ and 0, otherwise. The graph $G^S$ associated with the matrix $A_S(G)$ is called the maximum degree minimum covering graph (MDMC-graph) of the graph $G$. In this paper, we give conditions for the graph $G^S$ to be bipartite and Hamiltonian. Also we obtain a bound for the number of edges of the graph $G^S$ in terms of the structure of $G$. Further we obtain an upper bound for covering number (independence number) of $G^S$ in terms of the covering number (independence number) of $G$.
Journal article

Journal article

Journal article

Journal article

Journal article

Journal article

Journal article

Journal article

Journal article

Journal article

Journal article

Journal article

Journal article