On Maximum Signless Laplacian Estrada Index of Graphs with Given Parameters II
2018  //  DOI: 10.5614/ejgta.2018.6.1.14
Ramin Nasiri, Hamid Reza Ellahi, Gholam Hossein Fath-Tabar, Ahmad Gholami

Metrik

  • Eye Icon 95 kali dilihat
  • Download Icon 40 downloads
Metrics Icon 95 kali dilihat  //  40 downloads
Abstrak

The signless Laplacian Estrada index of a graph $G$ is defined as $SLEE(G)=\sum^{n}_{i=1}e^{q_i}$ where $q_1, q_2, \ldots, q_n$ are the eigenvalues of the signless Laplacian matrix of G. Following the previous work in which we have identified the unique graphs with maximum signless Laplacian Estrada index with each of the given parameters, namely, number of cut edges, pendent vertices, (vertex) connectivity, and edge connectivity, in this paper we continue our characterization for two further parameters: diameter and number of cut vertices.

Full text
Show more arrow
 
More from this journal
Fibonacci Number of the Tadpole Graph
Automorphism Group of Certain Power Graphs of Finite Groups
On the Independent Set Interdiction Problem
🧐  Browse all from this journal

Metrik

  • Eye Icon 95 kali dilihat
  • Download Icon 40 downloads
Metrics Icon 95 kali dilihat  //  40 downloads