The Effect of BaCO3 Compound Changes on the Formation of Magnetic Material BaFe12O19

Priyono Priyono • Agung Cahyono • Indras Marhaendrajaya • Agus Subagio • Vincensius Gunawan

Download full text
(Bahasa Indonesia, 5 pages)


BaFe12O19 is a permanent magnetic material which has superior properties to be excellent until the late of twentieth century. Some of the obstacles in the synthesis of the material using a stoichiometric composition is a difficulty to obtain a single phase and the second phase is always found. This research attempted to make modifications on the initial non-stoichiometric composition by varying the fraction of Ba/Fe through BaCO3 and Fe2O3 compound through solid state reaction mechanism. This solid state reaction was initiated by mixing various fractions of BaCO3 and Fe2O3 powder composition and compacted to produce a homogeneous mixture using a planetary milling. After drying and molding, it was obtained a homogeneous mixture like a cylinder with a diameter of 2:54 cm and a thickness of 0.5 cm. The BaFe12O19 phase was obtained by heating the sample at a temperature of 1200 ° C for 4 hours. To determine changes in the fraction of Ba/Fe before and after sintering, the samples were tested by X-Ray Fluorescence (XRF), while the structure and crystallinity were tested by X-ray diffraction (XRD) and Scanning Electron Microscope (SEM). The results showed that during the heating process, the reduction of barium fractions exceeded 5% from of their initial weight, while changes in the fraction of Fe was not significant. The results of structure and crystallinity measurement showed that the addition a substantial amount of barium carbonate can lead to the decrease of crystallinity from 35.271 nm to 11.265 nm.




Jurnal Sains dan Matematika Universitas Diponegoro

Jurnal Sains dan Matematika Universitas Diponegoro (JSM) diterbitkan oleh Fakultas Sains dan Mate... see more