Journal article // Jurnal Keteknikan Pertanian






Aplikasi Model Artificial Neural Network Terintegrasi dengan Geographycal Information System untuk Evaluasi Kesesuaian Lahan Perkebunan Kakao
2008
Hermantoro Hermantoro, Rudiyanto Rudiyanto, Slamet Suprayogi

Metrics

  • Eye Icon 163 views
  • Download Icon 29 downloads
Metrics Icon 163 views  //  29 downloads
Aplikasi Model Artificial Neural Network Terintegrasi dengan Geographycal Information System untuk Evaluasi Kesesuaian Lahan Perkebunan Kakao Image
Abstract

Land evaluation for specific purpose in plantation sector become very important due to increasing the competition in land use and the development of plantation sector. Land evaluation produces information of land economic values for specific land use. The objective of the research is to develop land evaluation method for cocoa estate using integrated model Artificial Neural Network (ANN) and Geographical Information System (GIS). Back propagation ANN model were used to predict cocoa yield base on land qualities parameter. The result shows that the best of ANN model to predict cocoa yield have 15 input layer, 15 hidden layer, and 1 output layer. with the determination coefficient (r2) of 0.99 and Root Mean Square Error (RMSE) of 93.83 in the training process, otherwise in the testing found the r2of O. 76 and RMSE of 113.83. In verification stage the integrated model ofANN and GIS was used to evaluate land suitability of Wijayaarga Cocoa Plantation is seem accurate in predicting cocoa yield and easers to mapping the land suitability unit.

Full text
Show more arrow
 

Metrics

  • Eye Icon 163 views
  • Download Icon 29 downloads
Metrics Icon 163 views  //  29 downloads