Klasifikasi Naïve Bayes untuk Prediksi Kelahiran pada Data Ibu Hamil

Aris Nugroho • Subanar Subanar
Journal article Berkala Ilmiah MIPA • 2013

Download full text
(Bahasa Indonesia, 12 pages)

Abstract

Dalam bidang kesehatan terkhusus Kesehatan Ibu dan Anak, memprediksi suatu kejadian resiko tinggi (resti) pada kehamilan ibu sehingga kemunculan resiko secara dini bisa ditanggulangi akan sangat mempengaruhi penurunan Angka Kematian Ibu (AKI) maupun Angka Kematian Bayi (AKB). Dengan Model pendekatan Bayesian berupa Klasifikasi Naïve Bayes dengan HMAP (Hipotesis Maksimum A Posteriori) dipakai memprediksi kelahiran yang akan dialami ibu hamil dengan karakteristik Usia ibu, Tinggi Badan, Jumlah Hb, Tekanan Darah, Riwayat Kehamilan lalu dan Penyakit bawaan. Semua data didiskritkan berdasar batasan yang dipakai Departemen Kesehatan dan hasil prediksi berupa probabilitas terjadinya resiko, bisa dipakai sebagai rujukan tempat melahirkan ataupun penilaian kinerja dari penyelenggara jasa persalinan. Dengan fungsi klasifNB dalam bahasa R, fase Training untuk estimasi maksimum likelihood dan sesuai dengan karakteristik ibu hamil, aplikasi menjadi dinamis melakukan prediksi sesuai wilayah dipilih.

Metrics

  • 132 views
  • 124 downloads

Journal

Berkala Ilmiah MIPA

Berkala Ilmiah MIPA diterbitkan tiga kali setahun, sebagai media komunikasi guna melaporkan hasil... see more