Masalah Dirichlet untuk Persamaan Beda dalam Graf Terboboti

A. D. Garnadi • E. Khatiza
Journal article Jurnal Matematika dan Aplikasinya • 2010

Download full text
(Bahasa Indonesia, 10 pages)

Abstract

Permasalahan umum persamaan diferensial parsial dapat ditirukan ke dalam graf, khususnya dalam graf terhubung tak berarah. Definisikan fungsi bernilai real f x( ) untuk verteks, x, di G dan ruang Hilbert 2 L G( ) yang dibentuk oleh semua fungsi f G R :  . Berdasarkan sifat seminorma pada 2 L G( ) definisikan subruang 1 H G( ) yang tersusun dari semua fungsi bernilai nol. Relasi ekuivalensi yang terdapat dalam 2 L G( ) mengakibatkan subruang 1 H G( ) dapat diidentifikasi melalui ruang kuosen 2 2 L G L G %( ) ( ) / ~  . Penyesuaian untuk fungsi dua variabel dilakukan dengan menambahkan definisi turunan berarah dalam variabel pertama. Definisi dan notasi pada graf G dapat diterapkan pada S S S   dengan S adalah subgraf terimbas G yang memiliki batas S . Dalam masalah Dirichlet, pembahasan difokuskan pada graf terimbas S dari G dengan bobot  ( , ) x y yang dipadankan pada setiap sisi di G. Asumsikan batas S kosong dan definisikan f S R :  . Solusi dari masalah Dirichlet ekuivalen dengan solusi masalah variasional. Masalah Dirichlet non homogen dengan fungsi yang diberikan g S R :   , dapat direduksi ke dalam masalah Dirichlet homogen. Solusi dari masalah ini diberikan menggunakan fungsi Green. Pendekatan ini cukup bagus bila dibandingkan dengan masalah identifikasi Berenstein dan Chunng [2].

Metrics

  • 92 views
  • 19 downloads

Journal

Jurnal Matematika dan Aplikasinya

Jurnal Matematika dan Aplikasinya merupakan media yang memuat infonnasi hasil penelitian matemati... see more