Metrics

  • visibility 0 views
  • get_app 2 downloads
description Journal article public Jurnal Komputer dan Informatika

Kajian Machine Learning dengan Komparasi Klasifikasi Prediksi Dataset Tenaga Kerja Non-aktif

Derwin Rony Sina, Neutrino Kusrorong Sae Belaudin Kusrorong, Nelci Dessy Rumlaklak
Published 31 March 2019

Abstract

Comparative studies of machine learning are carried out with the aim of determining the best method base based on the ability to predict with true data. The study carried out on the labor dataset aims to extract information on the choice of agency employees to exit or not. The method used in the comparative study is K-Nearest Neighbors (KNN) from the basis of similarity, Naïve Bayes (NB) from the probability base, and C4.5 from the basis of the decision tree. Application design and construction is done by receiving input labor data, the dataset is divided into training data and test data, training data for training and models while the test data is used when classifying by model. The classification process is carried out using supply training scenarios and cross validation of 14,999 data. The initial hypothesis C4.5 is the best method with an accuracy measure. Proof of the initial hypothesis will be true if the best accuracy majority is owned by the C4.5 method with supply trainning scenarios and cross validation. The results of the classification data analysis found that the C4.5 accuracy was superior in each parameter of the inventory training scenario data distribution and the k-fold parameter was 3. 5. 7, and 9 of the cross validation scenario so that the best method of non-active labor classification was C4.5.

Full text

 

Metrics

  • visibility 0 views
  • get_app 2 downloads