Metrics

  • visibility 0 views
  • get_app 4 downloads

Forecasting Of The Stock Rate Of Leading World Companies Using Econometric Methods And Dcf Analysis

Olena Nikolaieva, Anzhela Petrova, Rostyslav Lutsenko
Published 2020

Abstract

In this article, we will cover various models for forecasting the stock price of global companies, namely the DCF model, with well-reasoned financial analysis and the ARIMA model, an integrated model of autoregression − moving average, as an econometric mechanism for point and interval forecasting. The main goal is to compare the obtained forecasting results and evaluate their real accuracy. The article is based on forecasting stock prices of two companies: Coca-Cola HBC AG (CCHGY) and Nestle S.A. (NSRGF). At the moment, it is not determined which approach is better for predicting the stock price − the analysis of financial indicators or the use of econometric data analysis methods.

Full text

 

Metrics

  • visibility 0 views
  • get_app 4 downloads