Journal article // Inferensi






Pemodelan Harga Cryptocurrency Menggunakan Markov Switching Autoregressive
2020  //  DOI: 10.12962/j27213862.v3i2.7726
Akhmad Ridho Ashariansyah, Nur Iriawan, Adatul Mukarromah

Metrics

  • Eye Icon 0 views
  • Download Icon 0 downloads
Metrics Icon 0 views  //  0 downloads
Abstract

Perdagangan merupakan sebuah kegiatan tukar menukar barang atau jasa yang dilakukan manusia untuk memenuhi kebutuhan hidup. Perkembangan sistem pembayaran yang dilakukan umat manusia dimulai dari sistem pertukaran barang atau barter, logam mulia seperti emas dan perak, koin, uang kartal, uang giral, dan uang elektronik (e-money). Selain itu, muncul cryptocurrency yaitu mata uang digital dengan sistem kriptografi dalam setiap proses transaksi datanya tanpa melalui pihak ketiga. Namun cryptocurrency memiliki kelemahan Perubahan harga yang sangat besar dalam waktu yang sangat cepat. Pergerakan harga yang berfluktuasi sangat tinggi tersebut menyebabkan kekhawatiran pemilik aset kripto mengalami kerugian, maka pemodelan harga cryptocurrency sangat penting untuk dilakukan agar meminimalisir risiko kerugi-an. Berdasarkan pola pergerakan harga yang berfluktuasi sangat tinggi yang berbeda tiap periodenya maka dilakukanlah pemodelan harga cryptocurrency mengguna-kan Markov Switching Autoregressive (MSAR) dengan algoritma Expectation Maximization. Selain meminimkan risiko kerugian, penelitian ini juga ingin mengetahui model MSAR mana yang mampu mengklasifikasikan state dengan baik. Data yang digunakan yaitu harga harian cryptocurrency dengan nilai kapitalisasi pasar terbesar dari September 2015 hingga Januari 2020. Hasil penelitian menunjukkan bahwa bitcoin dan ripple menggunakan model MS(8)AR(1), sedangkan ethereum menggunakan model MS(9)AR(1). Selain itu model MS(8)AR(1) pada data ripple menjadi model dengan nilai akurasi tertinggi dibandingkan model lainnya dalam hal klasifikasi state.

Full text
Show more arrow
 

Metrics

  • Eye Icon 0 views
  • Download Icon 0 downloads
Metrics Icon 0 views  //  0 downloads