Bounds on Weak and Strong Total Domination in Graphs
2016  //  DOI: 10.5614/ejgta.2016.4.1.10
M. H. Akhbari, Nader Jafari Rad

Metrics

  • Eye Icon 242 views
  • Download Icon 109 downloads
Metrics Icon 242 views  //  109 downloads
Bounds on Weak and Strong Total Domination in Graphs Image
Abstract

A set $D$ of vertices in a graph $G=(V,E)$ is a total dominatingset if every vertex of $G$ is adjacent to some vertex in $D$. Atotal dominating set $D$ of $G$ is said to be weak if everyvertex $v\in V-D$ is adjacent to a vertex $u\in D$ such that$d_{G}(v)\geq d_{G}(u)$. The weak total domination number$\gamma_{wt}(G)$ of $G$ is the minimum cardinality of a weaktotal dominating set of $G$. A total dominating set $D$ of $G$ issaid to be strong if every vertex $v\in V-D$ is adjacent to avertex $u\in D$ such that $d_{G}(v)\leq d_{G}(u)$. The strongtotal domination number $\gamma_{st}(G)$ of $G$ is the minimumcardinality of a strong total dominating set of $G$. We presentsome bounds on weak and strong total domination number of a graph.

Full text
Show more arrow
 

Metrics

  • Eye Icon 242 views
  • Download Icon 109 downloads
Metrics Icon 242 views  //  109 downloads