Weighted Graphs: Eigenvalues and Chromatic Number
2016  //  DOI: 10.5614/ejgta.2016.4.1.2
Charles Delorme

Metrics

  • Eye Icon 195 views
  • Download Icon 78 downloads
Metrics Icon 195 views  //  78 downloads
Weighted Graphs: Eigenvalues and Chromatic Number Image
Abstract

We revisit Hoffman relation involving chromatic number $\chi$ and eigenvalues. We construct some graphs and weighted graphs such that the largest and smallest eigenvalues $\lambda$ dan $\mu$ satisfy $\lambda=(1-\chi)\mu.$ We study in particular the eigenvalues of the integer simplex $T_m^2,$ a 3-chromatic graph on $\binom {m+2}{2}$ vertices.

Full text
Show more arrow
 
More from this journal
On D-antimagic Labelings of Plane Graphs
On D\u002Dantimagic Labelings of Plane Graphs Image
🧐  Browse all from this journal

Metrics

  • Eye Icon 195 views
  • Download Icon 78 downloads
Metrics Icon 195 views  //  78 downloads